Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sensors (Basel) ; 23(22)2023 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-38005502

RESUMEN

Arthrogenic muscle inhibition (AMI) refers to muscular alterations that are generated, producing biomechanical motor control and movement problems, leading to deficiencies in strength and atrophy. Currently, there exist methods that involve virtual reality (VR) and have been well perceived by physiotherapists. The present research measured the potential benefits in terms of therapeutic adherence and speed of recovery, through a comparative analysis in a healthcare provider institution, in Medellín, Colombia, with and without the aid of VR. For this purpose, dynamometry, and surface electromyography (sEMG) signal acquisition tools were used. The treatment involved neuromodulation, ranges of motion and mobility work, strengthening and reintegration into movement, complemented with TENS, NMENS and therapeutic exercise, where the patient was expected to receive a satisfactory and faster adherence and recovery. A group of 15 people with AMI who include at least 15 min of VR per session in their treatment were compared with another group who received only the base treatment, i.e., the control group. Analyzing the variables individually, it is possible to affirm that VR, as a complement, statistically significantly improved the therapeutic adherence in 33.3% for CG and 37.5% for IG. Additionally, it increased strength with both legs, the symmetry between them, and decreased the level of pain and stiffness that is related to mobility.


Asunto(s)
Fuerza Muscular , Realidad Virtual , Humanos , Fuerza Muscular/fisiología , Terapia por Ejercicio/métodos , Movimiento , Electromiografía
2.
Sensors (Basel) ; 22(15)2022 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-35898105

RESUMEN

Landmine victims require an engaging and immersive rehabilitation process to maintain motivation and therapeutic adherence, such as virtual reality games. This paper proposes a virtual reality exercise game called Exogames, which works with Nukawa, a lower limb rehabilitation robot (LLRR). Together, they constitute the general Kina system. The design and development process of Exogames is reported, as well as the evaluation of its potential for physical and emotional rehabilitation. In an initial survey designed ad-hoc, 13 health professionals evaluated compliance with various requirements. They agreed that Exogames would help the user focus on rehabilitation by providing motivation; 92.3% said that the user will feel safe in the virtual world, 66.7% of them agreed or totally agreed that it presents characteristics that may enhance the physical rehabilitation of lower limbs for amputees, 83.3% stated that it would promote the welfare of landmine victims, and 76.9% responded that the graphical interface and data report are useful for real-time assessment, and would be helpful for four interventional areas in all rehabilitation stages. In a second evaluation, using standardized surveys, five physical therapists and one lower limb amputee tried the Kina system as users. They filled out the System Usability Scale (SUS), the Physical Activity Enjoyment Scale (PACES), and the Game Experience Questionnaire (GEQ). The usability of the Kina system overall score was 69 (66, 79) out of 100, suggesting an acceptable though improvable usability. The overall PACES score of 110 (108, 112) out of 126 suggests that users enjoyed the game well. Finally, users indicated a positive effect with a good sense of immersion and smooth of gameplay during the tests, as indicated by the GEQ results. In summary, the evaluations showed that Exogames has the potential to be used as a virtual reality game for the physical and emotional rehabilitation of landmine victims.


Asunto(s)
Amputados , Fisioterapeutas , Juegos de Video , Realidad Virtual , Humanos , Interfaz Usuario-Computador
3.
Biomed Eng Online ; 18(1): 3, 2019 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-30606192

RESUMEN

BACKGROUND: A direct blow to the knee is one way to injure the anterior cruciate ligament (ACL), e.g., during a football or traffic accident. Robot-assisted therapy (RAT) rehabilitation, simulating regular walking, improves walking and balance abilities, and extensor strength after ACL reconstruction. However, there is a need to perform RAT during other phases of ACL injury rehabilitation before attempting an advanced exercise such as walking. This paper aims to propose a myoelectric control (MEC) algorithm for a robot-assisted rehabilitation system, "Nukawa", to assist knee movement during these types of exercises, i.e., such as in active-assisted extension exercises. METHODS: Surface electromyography (sEMG) signal processing algorithm was developed to detect the motion intention of the knee joint. The sEMG signal processing algorithm and the movement control algorithm, reported by the authors in a previous publication, were joined together as a hardware-in-the-loop simulation to create and test the MEC algorithm, instead of using the actual robot. EXPERIMENTS AND RESULTS: An experimental protocol was conducted with 17 healthy subjects to acquire sEMG signals and their lower limb kinematics during 12 ACL rehabilitation exercises. The proposed motion intention algorithm detected the orientation of the intention 100% of the times for the extension and flexion exercises. Also, it detected in 94% and 59% of the cases the intensity of the movement intention in a comparable way to the maximum voluntary contraction (MVC) during extension exercises and flexion exercises, respectively. The maximum position mean absolute error was [Formula: see text], [Formula: see text], and [Formula: see text] for the hip, knee, and ankle joints, respectively. CONCLUSIONS: The MEC algorithm detected the intensity of the movement intention, approximately, in a comparable way to the MVC and the orientation. Moreover, it requires no prior training or additional torque sensors. Also, it controls the speed of the knee joint of Nukawa to assist the knee movement, i.e., such as in active-assisted extension exercises.


Asunto(s)
Lesiones del Ligamento Cruzado Anterior/rehabilitación , Simulación por Computador , Diseño de Equipo , Terapia por Ejercicio/instrumentación , Robótica , Adulto , Algoritmos , Lesiones del Ligamento Cruzado Anterior/cirugía , Fenómenos Biomecánicos , Calibración , Electrodos , Electromiografía , Terapia por Ejercicio/métodos , Voluntarios Sanos , Humanos , Articulación de la Rodilla/diagnóstico por imagen , Masculino , Persona de Mediana Edad , Movimiento , Procesamiento de Señales Asistido por Computador , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...